Senin, 12 Februari 2018

Sponsored Links

Message authentication code - YouTube
src: i.ytimg.com

In cryptography, a keyed-hash message authentication code (HMAC) is a specific type of message authentication code (MAC) involving a cryptographic hash function and a secret cryptographic key. It may be used to simultaneously verify both the data integrity and the authentication of a message, as with any MAC. Any cryptographic hash function, such as MD5 or SHA-1, may be used in the calculation of an HMAC; the resulting MAC algorithm is termed HMAC-X, where X is the hash function used (e.g. HMAC-MD5 or HMAC-SHA1). The cryptographic strength of the HMAC depends upon the cryptographic strength of the underlying hash function, the size of its hash output, and the size and quality of the key.

HMAC generation uses two passes of hash computation. The secret key is first used to derive two keys - inner and outer. The first pass of the algorithm produces an internal hash derived from the message and the inner key. The second pass produces the final HMAC code derived from the inner hash result and the outer key. Thus the algorithm provides better immunity against length extension attacks.

An iterative hash function breaks up a message into blocks of a fixed size and iterates over them with a compression function. For example, MD5 and SHA-1 operate on 512-bit blocks. The size of the output of HMAC is the same as that of the underlying hash function (e.g., 128 or 160 bits in the case of MD5 or SHA-1, respectively), although it can be truncated if desired.

HMAC does not encrypt the message. Instead, the message (encrypted or not) must be sent alongside the HMAC hash. Parties with the secret key will hash the message again themselves, and if it is authentic, the received and computed hashes will match.

The definition and analysis of the HMAC construction was first published in 1996 in a paper by Mihir Bellare, Ran Canetti, and Hugo Krawczyk, and they also wrote RFC 2104 in 1997. The 1996 paper also defined a variant called NMAC that is rarely, if ever, used. FIPS PUB 198 generalizes and standardizes the use of HMACs. HMAC is used within the IPsec and TLS protocols.


Video Hash-based message authentication code



Definition

This definition is taken from RFC 2104:

HMAC ( K , m ) = H ( ( K ? ? o p a d ) ? H ( ( K ? ? i p a d ) ? m ) ) {\displaystyle \operatorname {HMAC} (K,m)=H{\Bigl (}(K'\oplus opad)\|H{\bigl (}(K'\oplus ipad)\|m{\bigr )}{\Bigr )}}

where

H is a cryptographic hash function,
K is the secret key,
m is the message to be authenticated,
K' is another secret key, derived from the original key K (by padding K to the right with extra zeroes to the input block size of the hash function, or by hashing K if it is longer than that block size),
|| denotes concatenation,
? denotes exclusive or (XOR),
opad is the outer padding (0x5c5c5c...5c5c, one-block-long hexadecimal constant),
and ipad is the inner padding (0x363636...3636, one-block-long hexadecimal constant).

Maps Hash-based message authentication code



Implementation

The following pseudocode demonstrates how HMAC may be implemented. Blocksize is 64 (bytes) when using one of the following hash functions: SHA-1, MD5, RIPEMD-128/160.


  Function hmac     Inputs:        key:        Bytes     array of bytes        message:    Bytes     array of bytes to be hashed        hash:       Function  the hash function to use (e.g. SHA-1)        blockSize:  Integer   the block size of the underlying hash function (e.g. 64 bytes for SHA-1)        outputSize: Integer   the output size of the underlying hash function (e.g. 20 bytes for SHA-1)        Keys longer than blockSize are shortened by hashing them     if (length(key) > blockSize) then        key <- hash(key) //Key becomes outputSize bytes long          Keys shorter than blockSize are padded to blockSize by padding with zeros on the right     if (length(key) < blockSize) then        key <- Pad(key, blockSize)  //pad key with zeros to make it blockSize bytes long           o_key_pad = key xor [0x5c * blockSize]   //Outer padded key     i_key_pad = key xor [0x36 * blockSize]   //Inner padded key           return hash(o_key_pad ? hash(i_key_pad ? message)) //Where ? is concatenation  

Hashes Lesson Introduction ○The birthday paradox and length of ...
src: images.slideplayer.com


Design principles

The design of the HMAC specification was motivated by the existence of attacks on more trivial mechanisms for combining a key with a hash function. For example, one might assume the same security that HMAC provides could be achieved with MAC = H(key || message). However, this method suffers from a serious flaw: with most hash functions, it is easy to append data to the message without knowing the key and obtain another valid MAC ("length-extension attack"). The alternative, appending the key using MAC = H(message || key), suffers from the problem that an attacker who can find collision in the (unkeyed) hash function has a collision in the MAC (as two messages m1 and m2 yielding the same hash will provide the same start condition to the hash function before the appended key is hashed, hence the final hash will be the same). Using MAC = H(key || message || key) is better, but various security papers have suggested vulnerabilities with this approach, even when two different keys are used.

No known extension attacks have been found against the current HMAC specification which is defined as H(key || H(key || message)) because the outer application of the hash function masks the intermediate result of the internal hash. The values of ipad and opad are not critical to the security of the algorithm, but were defined in such a way to have a large Hamming distance from each other and so the inner and outer keys will have fewer bits in common. The security reduction of HMAC does require them to be different in at least one bit.

The Keccak hash function, that was selected by NIST as the SHA-3 competition winner, doesn't need this nested approach and can be used to generate a MAC by simply prepending the key to the message, as it is not susceptible to length-extension attacks.


Message Authentication Code - Demo - YouTube
src: i.ytimg.com


Security

The cryptographic strength of the HMAC depends upon the size of the secret key that is used. The most common attack against HMACs is brute force to uncover the secret key. HMACs are substantially less affected by collisions than their underlying hashing algorithms alone. Therefore, HMAC-MD5 does not suffer from the same weaknesses that have been found in MD5.

In 2006, Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong showed how to distinguish HMAC with reduced versions of MD5 and SHA-1 or full versions of HAVAL, MD4, and SHA-0 from a random function or HMAC with a random function. Differential distinguishers allow an attacker to devise a forgery attack on HMAC. Furthermore, differential and rectangle distinguishers can lead to second-preimage attacks. HMAC with the full version of MD4 can be forged with this knowledge. These attacks do not contradict the security proof of HMAC, but provide insight into HMAC based on existing cryptographic hash functions.

In 2009, Xiaoyun Wang et al. presented a distinguishing attack on HMAC-MD5 without using related keys. It can distinguish an instantiation of HMAC with MD5 from an instantiation with a random function with 297 queries with probability 0.87.

In 2011 an informational RFC 6151 was published to summarize security considerations in MD5 and HMAC-MD5. For HMAC-MD5 the RFC summarizes that - although the security of the MD5 hash function itself is severely compromised - the currently known "attacks on HMAC-MD5 do not seem to indicate a practical vulnerability when used as a message authentication code", but it also adds that "for a new protocol design, a ciphersuite with HMAC-MD5 should not be included".


Hashes Lesson Introduction ○The birthday paradox and length of ...
src: images.slideplayer.com


Examples

Here are some empty HMAC values:

  HMAC_MD5("", "")    = 74e6f7298a9c2d168935f58c001bad88  HMAC_SHA1("", "")   = fbdb1d1b18aa6c08324b7d64b71fb76370690e1d  HMAC_SHA256("", "") = b613679a0814d9ec772f95d778c35fc5ff1697c493715653c6c712144292c5ad  

Here are some non-empty HMAC values, assuming 8-bit ASCII or UTF-8 encoding:

  HMAC_MD5("key", "The quick brown fox jumps over the lazy dog")    = 80070713463e7749b90c2dc24911e275  HMAC_SHA1("key", "The quick brown fox jumps over the lazy dog")   = de7c9b85b8b78aa6bc8a7a36f70a90701c9db4d9  HMAC_SHA256("key", "The quick brown fox jumps over the lazy dog") = f7bc83f430538424b13298e6aa6fb143ef4d59a14946175997479dbc2d1a3cd8  

Chapter 2: SSL VPN Technology | Network World
src: images.techhive.com


References

Notes

Defending against Sybil Devices in Crowdsourced Mapping Services ...
src: images.slideplayer.com


External links

  • RFC2104
  • Online HMAC Calculator for dozens of underlying hashing algorithms
  • Online HMAC Generator / Tester Tool
  • FIPS PUB 198-1, The Keyed-Hash Message Authentication Code (HMAC)
  • PHP HMAC implementation
  • Python HMAC implementation
  • Perl HMAC implementation
  • Ruby HMAC implementation
  • C HMAC implementation
  • C++ HMAC implementation (part of Crypto++)
  • Java implementation
  • JavaScript MD5 and SHA HMAC implementation
  • JavaScript SHA-only HMAC implementation
  • .NET's System.Security.Cryptography.HMAC
  • Delphi/Free Pascal implementation
  • PicoLisp implementation

Source of the article : Wikipedia

Comments
0 Comments